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Band of localized electromagnetic waves in random arrays of dielectric cylinders
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Anderson localization of electromagnetic waves in random arrays of dielectric cylinders is studied. An
effective theoretical approach based on analysis of probability distributions, not averages, is developed. The
disordered dielectric medium is modeled by a system of randomly distributed two-dimensional electric dipoles.
Spectra of certain random matrices are investigated and the appearance of the band of localized waves emerg-
ing in the limit of an infinite medium is discovered. It suggests deeper insight into the existing experimental
results.[S1063-651X97)00410-9

PACS numbes): 41.20.Jb, 72.15.Rn, 42.25.Fx, 03.65.Ge

Disordered dielectric structures with typical length scalebehavior described by the diffusion equation to wavelike be-
matching the wavelength of electromagnetic radiation ardavior described by the Schdimger equation which results
still a subject of intensive experimental and theoretical studin localization[7].
ies. Electromagnetic waves propagating in these structures It is commonly believed that the Anderson localization is
mimic, to reasonable extent, the behavior of electrons in discompletely based on the interference effects in multiple elas-
ordered semiconductors. Many ideas concerning transpotic scattering. It is obvious, however, that interference is a
properties of light and microwaves in such media exploit thecommon property of all wave phenomena. Indeed, many
well-developed theoretical methods and concepts of solidgeneralizations of electron localization to electromagnetic
state physics. Let us mention, e.g., the concept of electrofyaves have been propos¢@d—13. Weak localization of
localization in noncrystalline systems such as amorphoug|ectromagnetic waves, meaning enhanced coherent back-
semiconductors or disordered insulators. According tGscattering, is presently relatively well understood theoreti-
Anderson[1], an entirebandof electronic states can be spa- cally [14—16 and confirmed by experimenfis7—19. A dif-
tially Iocallize.d in a sufficiently Qisordered infinite 'material..ferent interesting problem is whether interference effects in
Before this discovery, it was believed that electronic states iy, jered dielectric media can reduce the diffusion constant
|n_f|n|te media are _e|ther _extended, by an_alogy W't.h the BIOChdown to zero leading to strong localization. Despite the ob-
picture for crystalline solids, or are localized arousdlated servation of scale dependence of the diffusion consh)

spatial regions such as surfaces and impur{t&s ; . : ;
Usually experiments related to electron localization deal” _such media(which may be co_nsndered as a reasonable
dication of the Anderson transitiprihere still is no con-

with such measurable quantities as transmission, diffusiof{'®'c ) . o
constant, or transport coefficient. The natural quantity to'IN¢iNY experimental demonstration that strong localization
look for is, e.g., the statiédc) conductivity. Intuitively, lo- could be possible in three-dimensional disordered dielectric

calized states are basically bound to stay in a finite region oftructures. Such a demonstration has only been given for two
space for all times, whereas extended ones are free to floimensions, where strong localization takes place for arbi-
out of any finite region. Therefore, it is natural to expect thattrarily small value of the mean free pafti the medium is
the material in which an entire band of electronic states isufficiently large. The strongly scattering medium has been
localized will be an insulator, whereas the case of extendefirovided by a set of dielectric cylinders randomly placed
states will correspond to a conductor. In this way the phebetween two parallel aluminum plates on half the sites of a
nomenon of Anderson localization may be related to a drasquare latticé20].
matic inhibition of the propagation of an electron when itis  There still is a need for sound theoretical models provid-
subject to a spatially random potential. Although this con-ing deeper insight into this interesting effect. Such models
nection is not proven on a general basis, it is certainly valicshould be based directly on the Maxwell equations and they
within reasonable physical moddI3]. should be simple enough to provide calculations without too
A very common theoretical approach in investigations ofmany approximations. There is a temptation to immediately
Anderson localization in solid-state physics is to study theapply averaging procedures as soon as “disorder” is intro-
transport equation for the ensemble-averaged squared modduced into the model. Averaging of the scattered intensity
lus of the wave functiorf4—6]. Under some assumptions over some random variable leads to a transport thEaty
such a transport equation can be converted into a diffusioBut “there is a very important and fundamental truth about
equation. The diffusion constafi® becomes a parameter random systems we must always keep in mind: no real atom
monitoring behavior of the system. Strong localization isis an average atom, nor is an experiment done on an en-
achieved when the diffusion constant in the scattering mesemble of samples’[22]. We always deal with a specific
dium becomes zero. When the fluctuations of the electroniexample of the disordered system. Therefore what we really
static potential become large enough, the wave functiomeed to properly understand the existing experimental results
ceases to diffuse and becomes localized. Thus the Andersame probability distributions, not averages. In this paper we
transition may be viewed as a transition from particlelikedevelop a theoretical model of the Anderson localization of
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electromagnetic waves in two-dimension@D) dielectric
media without using any averaging procedures.

In the following we study the properties of the stationary
solutions of the Maxwell equations in two-dimensional me- 2
dia. This means that on) out of three dimensions is trans-

lationally invariant and only the remaining tw<5)( are ran-
dom. The main advantage of two-dimensional localization is
that we can use the scalar theory of electromagnetic wave
E(r,t)=Re{e,&(p)e '} and still can try to compare, at
least qualitatively, the model predictions with experimental
results[23]. Consequently, the polarization of the medium
takes the formP(r,t)=Re{e,P(p)e '},

Localization of electromagnetic waves in 2D media is
studied experimentally in microstructures consisting of di-
electric cylinders with diameters and mutual distances beint 2, = =00 05 10 15 20 25 30 35 40
comparable to the waveleng{l20]. It is a reasonable as- Re A
sumption that what really counts for the basic features or
localization is the scattering cross section and not the real FIG. 1. Spectrumi; of G matrix (diagonalized numerically
geometrical size of the scatterer. Therefore we will representorresponding to a certain specific configurationNsf 300 cylin-

the dielectric cylinders located at the poiri@by single2D  ders placed randomly inside a circle, with uniform density 1
electric dipolesP(ﬁ)—E D 5(2)(;)_5 ). Although this ap cylinder per wavelength squared. Most eigenvalues are located near
— ~ala al- -

proximation is strictly justified only when the diameter of the thngli}/\_ 1 axis, fulfiling the localization conditior7) almost

cylinders is much smaller than the wavelength, in practicaF '

calculations many multiple-scattering effects can be obtained

qualitatively for coupled electrical dipol¢24—26. 2 Mabgr(ﬁb):gm(ﬁa), (4)
The point-scatterer approximation requires a representa- b

tion for the scatterers that fulfills the optical theorem rigor- .

ously and conserves energy in the scattering processes. Tetermining the field acting on each cylind€r(p,) for a

satisfy the conservation of energy, the dipole moments given field of the free wavé(®)(p,) incident on the system.

should be coupled to the electric field of the incident wavelf we solve it and use again E€l) to find p,, then we are

6’(ﬁa) by complex “polarizability” (e'®—1)/2, which can  able to find the electromagnetic field everywhere in space

take values from a circle on the complex pld2&8] 5(5)=5(0)(5)+2k22aKo(—ik|5—5a|)pa (for 5¢5a)- A

similar integral equation relating the stationary outgoing

wave to the stationary incoming wave is known in general

scattering theory as the Lippmann-Schwinger equdtam.
Now, let us study eigenvalues of the matrix

Im A

1 -
imk*pa=5 (€Y= 1)€' (pa), (1)

wherek= w/c is the wave number in vacuum. The field act- .
ing on the ath cylinder is the sum of some free field P 2Ko(—ik|pa—pp|) for a#b, 5
£9)(p), which obeys the Maxwell equations in vacuum, and T2ab™ ) 0 for a=bh,

waves scattered by afither cylinders[23]

which depend only on the positions of the cylindeixr,§a
scaled in wavelengths. To gain some information about the
spectrum of theG matrix (5) corresponding to systems of
infinite number of cylinders placed randomly with uniform
whereK , denotes the modified Bessel function of the secondlensity, we have to study the propertiefiofte systems for
kind. increasing number of dipoleN (while keeping the density
To get some insight into the physical meaning of the paconstank First, in Fig. 1 we plot the spectrum; of a G

rameter¢ from Eq. (1) let us observe that it is directly re- matrix (diagonalized numericaljycorresponding to a certain
lated to the total scattering cross sectiorof an individual ~ specific configuration oN=300 cylinders placed randomly

5'(5a>:8°>(5a>+2k2t§a Ko(—iklpa=pp)Po, (2

dielectric cylinder represented by the single dipole inside a circle, with the uniform density=1 cylinder per
wavelength squared. We see that quite a lot of eigenvalues
ko=2(1—cosp). (3)  are located near the Re-—1 axis. As will be discussed

below, this is a universal property of 2B matrices, not

Therefore¢ is a function of the frequency and physical restricted to this specific realization of the system only.
parameters describing the cylinders such as dielectric cof/loreover, the number of eigenvalues fulfillirigp reason-
stante and radiusR. Thus each choice of is in fact a able accuracythe above condition increases with. To
choice of scatterers. prove these statements we diagonalize numericallyGhe
Inserting Eq.(1) into Eq. (2) we obtain the system of matrix (5) for 10° different distributionsp, of finite number
linear equations of N cylinders. Then we construct a two-dimensional
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N =100 Re\j=—1. @
0.0
-0.2 We have some numerical evidence that this fact is a general
~-0.4 property ofG matrices, not restricted to the considered case
~ 0.6 - — of one dipole per wavelength squarae-1 only [although
0.8 < —— the fl_m<_:t|onf from Eq. (6) certainly may depen_d on]. _
1.0 It is important to note that a deep connection exists be-
A5 10 05 00 05 L0 LS tween electromagnetic waves localized in the system of di-
electric cylinders located at pointe;3a and eigenvectors of
the G matrix which correspond to eigenvalugs satisfying
N =200 the localization condition7). To see this connection it is
0.0 . . .
enough to observe that eigenvectors of Genatrix are si-
02 multaneously eigenvectors of tihé matrix from Eq.(4). The
§32 difference is that contrary to th& matrix, the M matrix
:0'8 depends not only on the positions of the cylindtefg but
' also on the parametef. If a certain eigenvalug; of the G
1.0 . .
5 L0 05 00 05 1.0 1.5 matrix obeys the conditiof7) then we may choose the pa-
i rameter¢ in such a way that the corresponding eigenvalue
of the M matrix will be equal to zero, i.e,
N — 300 Aj(¢))=(1+X\;/2)—€'%i(\;/2)=0. It is enough to take
o A A
0.2 j i
=ard 1+ - |—ard = |. 8
~<-04 g % 2 E{ 2) ®
"-%-0.6 . . . .

08 Thus the corresponding eigenvector is a nonzero solution of
_1'0 = = Egs. (4) for the incoming wave equal to zero. Therefore it
T15 <10 05 0o 05 1.0 15 may be interpreted as a localized wa\&8]. The physical

m

FIG. 2. Contour plots of the density of eigenvall®s\) calcu-

meaning of this choice o# is clear. For given radiuseR
and dielectric constantg(w) of the cylinders the parameter

lated for 1 different distributions of cylinders for increasing size ¢ from Eg. (1) is fixed but remains a function of the fre-
of the systemN=100,200,300. The distance between neighboringdU€ncy, i.e.¢p= ¢(w). Thus for a given frequency and given

contours is the same for all plots. For increasing valuebl othe

positions of the scatterers we can always find such dielectric

probability distribution P(\) apparently moves towards the cylinders, that a localized wave exists in the medium.

Ren=—-1 axis and, simultaneously, its variance along the
Im\ =const axes decreases.

histogram of eigenvalues; from all distributions. It ap-
proximates the corresponding probability distributiB(A)
which is normalized in the standard wig’\P(\)=1. Let

us now compare the contour plots®f\) for different num-
bers of cylinderd\=100,200,300. They are presented in Fig.
2. For convenience, the distance between neighboring cor
tours is the same for all plots. It follows from inspection of
Fig. 2 that for increasing values of, the probability distri-
bution P(\) apparently moves towards the Re—1 axis
and, simultaneously, its variance along the\knconst axes
decreases. In addition, Fig. 3 we have the surface plot of th:
function P(\) calculated for the cas&l=300. It clearly
shows that for all configurationgvithout, maybe, a set of
zero measupe most eigenvalues are located near the
Rex = —1 axis. This tendency is more and more pronouncec
with increasing size of the system measured\byOur nu-
merical investigations indicate that in the limit of arfinite
medium, the probability distribution under consideration will
tend to thes function

lim P(\)=48(Rex+1)f(Im\). (6)

N— o

This means that in this limit for almost any random distribu-

g\\l\\
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| t\\ l“\“

m“\ “ i

I

i

Now consider a certain realization of an infinite system of

cylinders located randomly at poirﬁg with uniform density
7. As pointed out before infinite number of eigenvaldg®f

FIG. 3. Surface plot oP(\) corresponding to the cadé=300

tion of the cylinderskﬁa, infinite number of eigenvalues from Fig. 2. It shows where the most weight of tRé\) distribu-

satisfies the condition

tion is located.
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the G matrix satisfies the conditiofY). This occurs not only
for n=1 but for a whole range afi and therefore, for fixed
physical densityn=k?n/(2)?, for a range of frequencies
. Thus the values of; given by Eq.(8) which correspond  for ¢—0 (or Im\— +). However, in all experiments we
to localized waves should be now regarded as functions of can investigate only systems confined to cerfaiite regions
This means, that in the system considered localized wavesf space. As follows from Fig. 2dealing with finite medig
appear atliscretefrequencieso; determined by the crossing with increasing size of the system the band of localized
points of the functiong(w) with infinite number of curves \ygves appearfasterfor | ¢|= (or Im\=0), than for other
¢J(“’,)- , values of¢. This means that the scattering cross section of
It is reasonable to expect that in the case edirdomand  jnqividual scattererg3) should be made maximafor ex-

infinite system a countable set of frequencigscorrespond-  omie by tuning the frequency to match the internal reso-

ing to localized waves becomes dense in some finite intervay ;o5 of the cylindersThis is not necessarily the case for
Therefore, an entirband of spatially localized electromag- three-dimensional media.

netic waves appears. Anderson localization occurs when this In summary, we have developed an effective theoretical

.hap.pens. Phy;iqally speaking this means that different rea%ipproach(based on analysis of probability distributiorte
izations of sufficiently large system of randomly placed Cyl'Anderson localization of electromagnetic waves in random

inders are practicall{i.e., by a transmission experimgi- . arrays of dielectric cylinders. Investigating spectra of two-

distinguishable from each other. For example, for a certaiy; o nqjonal random Green matrices we have actually ob-
realization of a random and infinite one-dimensional systenl. . ed numerically the appearance of band of localized
?nte"can f;l)ro;/edr?athfar;watlc?l[y8]”that |nC|dt_ant waves ta'[ﬁ electromagnetic waves emerging in the limit of the infinite
do' a ytre eg:? or amosr)efany h??‘e[ﬁy’t"e" except IN€ medium. Similar approach can provide deeper insight into
ISCrete Selof zero measupetor which the transSmission 1S - ypq existing experimental results concerning localization in

equal to unity. This dense set of discrete energies exception : o : . . i
in the Furstenberg theoref29] corresponds to the band of tgail ir::e; Ifecl;rtwc]:lc?rr;ri];zr?)z\t;)negr problem will be addressed in de

localized waves.

According to the scaling theory of localizatidB0], the We wish to thank Zhao-Quing Zhang for many stimulat-
dimension of the disordered medium is a crucial parameteing discussions during the Localization '96 conference in
In one and two dimensions any degree of disorder will leadlaszowiec. This investigation was supported in part by Polish
to localization, while in three dimensions a certain critical KBN Grant 2 PO3B 092 12.

degree of disorder is needed before localization will set in.
Our calculations do not exclude the possibility that in an
infinite 2D medium the band of localized waves may appear
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