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Band of localized electromagnetic waves in random arrays of dielectric cylinders

Marian Rusek, Arkadiusz Orłowski, and Jan Mostowski
Instytut Fizyki, Polska Akademia Nauk, Aleja Lotniko´w 32/46, 02–668 Warszawa, Poland

~Received 6 February 1997!

Anderson localization of electromagnetic waves in random arrays of dielectric cylinders is studied. An
effective theoretical approach based on analysis of probability distributions, not averages, is developed. The
disordered dielectric medium is modeled by a system of randomly distributed two-dimensional electric dipoles.
Spectra of certain random matrices are investigated and the appearance of the band of localized waves emerg-
ing in the limit of an infinite medium is discovered. It suggests deeper insight into the existing experimental
results.@S1063-651X~97!00410-8#

PACS number~s!: 41.20.Jb, 72.15.Rn, 42.25.Fx, 03.65.Ge
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Disordered dielectric structures with typical length sc
matching the wavelength of electromagnetic radiation
still a subject of intensive experimental and theoretical st
ies. Electromagnetic waves propagating in these struct
mimic, to reasonable extent, the behavior of electrons in
ordered semiconductors. Many ideas concerning trans
properties of light and microwaves in such media exploit
well-developed theoretical methods and concepts of so
state physics. Let us mention, e.g., the concept of elec
localization in noncrystalline systems such as amorph
semiconductors or disordered insulators. According
Anderson@1#, an entirebandof electronic states can be sp
tially localized in a sufficiently disordered infinite materia
Before this discovery, it was believed that electronic state
infinite media are either extended, by analogy with the Blo
picture for crystalline solids, or are localized aroundisolated
spatial regions such as surfaces and impurities@2#.

Usually experiments related to electron localization d
with such measurable quantities as transmission, diffus
constant, or transport coefficient. The natural quantity
look for is, e.g., the static~dc! conductivity. Intuitively, lo-
calized states are basically bound to stay in a finite regio
space for all times, whereas extended ones are free to
out of any finite region. Therefore, it is natural to expect th
the material in which an entire band of electronic states
localized will be an insulator, whereas the case of exten
states will correspond to a conductor. In this way the p
nomenon of Anderson localization may be related to a d
matic inhibition of the propagation of an electron when it
subject to a spatially random potential. Although this co
nection is not proven on a general basis, it is certainly va
within reasonable physical models@3#.

A very common theoretical approach in investigations
Anderson localization in solid-state physics is to study
transport equation for the ensemble-averaged squared m
lus of the wave function@4–6#. Under some assumption
such a transport equation can be converted into a diffus
equation. The diffusion constantD becomes a paramete
monitoring behavior of the system. Strong localization
achieved when the diffusion constant in the scattering m
dium becomes zero. When the fluctuations of the electro
static potential become large enough, the wave func
ceases to diffuse and becomes localized. Thus the Ande
transition may be viewed as a transition from particleli
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behavior described by the diffusion equation to wavelike
havior described by the Schro¨dinger equation which result
in localization@7#.

It is commonly believed that the Anderson localization
completely based on the interference effects in multiple e
tic scattering. It is obvious, however, that interference is
common property of all wave phenomena. Indeed, ma
generalizations of electron localization to electromagne
waves have been proposed@7–13#. Weak localization of
electromagnetic waves, meaning enhanced coherent b
scattering, is presently relatively well understood theore
cally @14–16# and confirmed by experiments@17–19#. A dif-
ferent interesting problem is whether interference effects
disordered dielectric media can reduce the diffusion cons
down to zero leading to strong localization. Despite the o
servation of scale dependence of the diffusion constantD(L)
in such media~which may be considered as a reasona
indication of the Anderson transition! there still is no con-
vincing experimental demonstration that strong localizat
could be possible in three-dimensional disordered dielec
structures. Such a demonstration has only been given for
dimensions, where strong localization takes place for a
trarily small value of the mean free path~if the medium is
sufficiently large!. The strongly scattering medium has be
provided by a set of dielectric cylinders randomly plac
between two parallel aluminum plates on half the sites o
square lattice@20#.

There still is a need for sound theoretical models prov
ing deeper insight into this interesting effect. Such mod
should be based directly on the Maxwell equations and t
should be simple enough to provide calculations without
many approximations. There is a temptation to immediat
apply averaging procedures as soon as ‘‘disorder’’ is int
duced into the model. Averaging of the scattered intens
over some random variable leads to a transport theory@21#.
But ‘‘there is a very important and fundamental truth abo
random systems we must always keep in mind: no real a
is an average atom, nor is an experiment done on an
semble of samples’’@22#. We always deal with a specific
example of the disordered system. Therefore what we re
need to properly understand the existing experimental res
are probability distributions, not averages. In this paper
develop a theoretical model of the Anderson localization
4892 © 1997 The American Physical Society
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56 4893BRIEF REPORTS
electromagnetic waves in two-dimensional~2D! dielectric
media without using any averaging procedures.

In the following we study the properties of the stationa
solutions of the Maxwell equations in two-dimensional m
dia. This means that one (z) out of three dimensions is trans
lationally invariant and only the remaining two (rW ) are ran-
dom. The main advantage of two-dimensional localization
that we can use the scalar theory of electromagnetic wa
EW (rW,t)5Re$eW zE(rW )e2 ivt% and still can try to compare, a
least qualitatively, the model predictions with experimen
results@23#. Consequently, the polarization of the mediu
takes the form:PW (rW,t)5Re$eW zP(rW )e2 ivt%.

Localization of electromagnetic waves in 2D media
studied experimentally in microstructures consisting of
electric cylinders with diameters and mutual distances be
comparable to the wavelength@20#. It is a reasonable as
sumption that what really counts for the basic features
localization is the scattering cross section and not the
geometrical size of the scatterer. Therefore we will repres
the dielectric cylinders located at the pointsrW a by single2D
electric dipolesP(rW )5(apad (2)(rW 2rW a). Although this ap-
proximation is strictly justified only when the diameter of th
cylinders is much smaller than the wavelength, in practi
calculations many multiple-scattering effects can be obtai
qualitatively for coupled electrical dipoles@24–26#.

The point-scatterer approximation requires a represe
tion for the scatterers that fulfills the optical theorem rigo
ously and conserves energy in the scattering processes
satisfy the conservation of energy, the dipole momentspa
should be coupled to the electric field of the incident wa
E8(rW a) by complex ‘‘polarizability’’ (eif21)/2, which can
take values from a circle on the complex plane@23#

ipk2pa5
1

2
~eif21!E8~rW a!, ~1!

wherek5v/c is the wave number in vacuum. The field ac
ing on the ath cylinder is the sum of some free fiel
E(0)(rW ), which obeys the Maxwell equations in vacuum, a
waves scattered by allother cylinders@23#

E8~rW a!5E~0!~rW a!12k2(
bÞa

K0~2 ikurW a2rW bu!pb , ~2!

whereK0 denotes the modified Bessel function of the seco
kind.

To get some insight into the physical meaning of the
rameterf from Eq. ~1! let us observe that it is directly re
lated to the total scattering cross sections of an individual
dielectric cylinder represented by the single dipole

ks52~12cosf!. ~3!

Thereforef is a function of the frequencyv and physical
parameters describing the cylinders such as dielectric c
stant e and radiusR. Thus each choice off is in fact a
choice of scatterers.

Inserting Eq.~1! into Eq. ~2! we obtain the system o
linear equations
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MabE8~rW b!5E~0!~rW a!, ~4!

determining the field acting on each cylinderE8(rW a) for a
given field of the free waveE(0)(rW a) incident on the system.
If we solve it and use again Eq.~1! to find pa , then we are
able to find the electromagnetic field everywhere in spa
E(rW )5E(0)(rW )12k2(aK0(2 ikurW 2rW au)pa ~for rW ÞrW a). A
similar integral equation relating the stationary outgoin
wave to the stationary incoming wave is known in gene
scattering theory as the Lippmann-Schwinger equation@27#.

Now, let us study eigenvaluesl j of the matrix

ipGab5H 2K0~2 ikurW a2rW bu! for aÞb,

0 for a5b,
~5!

which depend only on the positions of the cylinderskrW a
scaled in wavelengths. To gain some information about
spectrum of theG matrix ~5! corresponding to systems o
infinite number of cylinders placed randomly with uniform
density, we have to study the properties offinite systems for
increasing number of dipolesN ~while keeping the density
constant!. First, in Fig. 1 we plot the spectruml j of a G
matrix ~diagonalized numerically! corresponding to a certain
specific configuration ofN5300 cylinders placed randomly
inside a circle, with the uniform densityn51 cylinder per
wavelength squared. We see that quite a lot of eigenval
are located near the Rel521 axis. As will be discussed
below, this is a universal property of 2DG matrices, not
restricted to this specific realization of the system on
Moreover, the number of eigenvalues fulfilling~to reason-
able accuracy! the above condition increases withN. To
prove these statements we diagonalize numerically theG

matrix ~5! for 103 different distributionsrW a of finite number
of N cylinders. Then we construct a two-dimension

FIG. 1. Spectruml j of G matrix ~diagonalized numerically!
corresponding to a certain specific configuration ofN5300 cylin-
ders placed randomly inside a circle, with uniform densityn51
cylinder per wavelength squared. Most eigenvalues are located
the Rel521 axis, fulfilling the localization condition~7! almost
exactly.
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4894 56BRIEF REPORTS
histogram of eigenvaluesl j from all distributions. It ap-
proximates the corresponding probability distributionP(l)
which is normalized in the standard way*d2lP(l)51. Let
us now compare the contour plots ofP(l) for different num-
bers of cylindersN5100,200,300. They are presented in F
2. For convenience, the distance between neighboring
tours is the same for all plots. It follows from inspection
Fig. 2 that for increasing values ofN, the probability distri-
bution P(l) apparently moves towards the Rel521 axis
and, simultaneously, its variance along the Iml5const axes
decreases. In addition, Fig. 3 we have the surface plot of
function P(l) calculated for the caseN5300. It clearly
shows that for all configurations~without, maybe, a set o
zero measure! most eigenvalues are located near t
Rel521 axis. This tendency is more and more pronounc
with increasing size of the system measured byN. Our nu-
merical investigations indicate that in the limit of aninfinite
medium, the probability distribution under consideration w
tend to thed function

lim
N→`

P~l!5d~Rel11! f ~ Iml!. ~6!

This means that in this limit for almost any random distrib
tion of the cylinderskrW a , infinite number of eigenvalue
satisfies the condition

FIG. 2. Contour plots of the density of eigenvaluesP(l) calcu-
lated for 103 different distributions of cylinders for increasing siz
of the systemN5100,200,300. The distance between neighbor
contours is the same for all plots. For increasing values ofN, the
probability distribution P(l) apparently moves towards th
Rel521 axis and, simultaneously, its variance along t
Iml5const axes decreases.
.
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e

d

l

-

Rel j521. ~7!

We have some numerical evidence that this fact is a gen
property ofG matrices, not restricted to the considered ca
of one dipole per wavelength squaredn51 only @although
the functionf from Eq. ~6! certainly may depend onn#.

It is important to note that a deep connection exists
tween electromagnetic waves localized in the system of
electric cylinders located at pointskrW a and eigenvectors o
the G matrix which correspond to eigenvaluesl j satisfying
the localization condition~7!. To see this connection it is
enough to observe that eigenvectors of theG matrix are si-
multaneously eigenvectors of theM matrix from Eq.~4!. The
difference is that contrary to theG matrix, the M matrix
depends not only on the positions of the cylinderskrW a but
also on the parameterf. If a certain eigenvaluel j of the G
matrix obeys the condition~7! then we may choose the pa
rameterf in such a way that the corresponding eigenva
of the M matrix will be equal to zero, i.e.
L j (f j )5(11l j /2)2eif j(l j /2)50. It is enough to take

f j5argS 11
l j

2 D2argS l j

2 D . ~8!

Thus the corresponding eigenvector is a nonzero solutio
Eqs. ~4! for the incoming wave equal to zero. Therefore
may be interpreted as a localized wave@23#. The physical
meaning of this choice off is clear. For given radiusesR
and dielectric constantse(v) of the cylinders the paramete
f from Eq. ~1! is fixed but remains a function of the fre
quency, i.e.,f5f(v). Thus for a given frequency and give
positions of the scatterers we can always find such dielec
cylinders, that a localized wave exists in the medium.

Now consider a certain realization of an infinite system
cylinders located randomly at pointsrW a with uniform density
h. As pointed out before infinite number of eigenvaluesl j of

FIG. 3. Surface plot ofP(l) corresponding to the caseN5300
from Fig. 2. It shows where the most weight of theP(l) distribu-
tion is located.
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56 4895BRIEF REPORTS
theG matrix satisfies the condition~7!. This occurs not only
for n51 but for a whole range ofn and therefore, for fixed
physical densityh5k2n/(2p)2, for a range of frequencie
v. Thus the values off j given by Eq.~8! which correspond
to localized waves should be now regarded as functions ov.
This means, that in the system considered localized wa
appear atdiscretefrequenciesv j determined by the crossin
points of the functionf(v) with infinite number of curves
f j (v).

It is reasonable to expect that in the case of arandomand
infinite system a countable set of frequenciesv j correspond-
ing to localized waves becomes dense in some finite inter
Therefore, an entireband of spatially localized electromag
netic waves appears. Anderson localization occurs when
happens. Physically speaking this means that different r
izations of sufficiently large system of randomly placed c
inders are practically~i.e., by a transmission experiment! in-
distinguishable from each other. For example, for a cer
realization of a random and infinite one-dimensional syst
one can prove mathematically@28# that incident waves are
totally reflected for ‘‘almost any’’ energy, i.e., except th
discrete set~of zero measure! for which the transmission is
equal to unity. This dense set of discrete energies excepti
in the Furstenberg theorem@29# corresponds to the band o
localized waves.

According to the scaling theory of localization@30#, the
dimension of the disordered medium is a crucial parame
In one and two dimensions any degree of disorder will le
to localization, while in three dimensions a certain critic
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degree of disorder is needed before localization will set
Our calculations do not exclude the possibility that in
infinite 2D medium the band of localized waves may app
for f→0 ~or Iml→6`). However, in all experiments we
can investigate only systems confined to certainfinite regions
of space. As follows from Fig. 2~dealing with finite media!,
with increasing size of the system the band of localiz
waves appearsfasterfor ufu.p ~or Iml.0), than for other
values off. This means that the scattering cross section
individual scatterers~3! should be made maximal~for ex-
ample, by tuning the frequency to match the internal re
nances of the cylinders!. This is not necessarily the case fo
three-dimensional media.

In summary, we have developed an effective theoret
approach~based on analysis of probability distributions! to
Anderson localization of electromagnetic waves in rand
arrays of dielectric cylinders. Investigating spectra of tw
dimensional random Green matrices we have actually
served numerically the appearance of theband of localized
electromagnetic waves emerging in the limit of the infin
medium. Similar approach can provide deeper insight i
the existing experimental results concerning localization
3D media. This interesting problem will be addressed in
tail in a forthcoming paper.
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